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Recently experiments showed that some biological noncovalent bonds increase their lifetimes when they are
stretched by an external force, and their lifetimes will decrease when the force increases further. Several
specific quantitative models have been proposed to explain the intriguing transitions from the “catch bond” to
the “slip bond.” In this work we propose that the dynamic disorder of the force-dependent dissociation rate can
account for the counterintuitive behaviors of the bonds. A Gaussian stochastic rate model is used to quantita-
tively describe the transitions observed recently in the single bond P-selctin glycoprotein ligand 1–P-selectin
force rupture experiment �Marshall et al., Nature 423, 190 �2003��. Our model agrees well with the experi-
mental data. We conclude that the catch bonds could arise from the stronger positive correlation between the
height of the intrinsic energy barrier and the distance from the bound state to the barrier; classical pathway
scenario or a priori catch bond assumption is not essential.

DOI: 10.1103/PhysRevE.73.010901 PACS number�s�: 87.15.Aa, 82.37.Rs, 87.15.By, 82.20.Uv

Since Bell proposed the famous force induced dissocia-
tion rate �1�,

koff = koff
0 exp��fx‡� , �1�

where koff
0 =k0 exp�−��G‡� is the intrinsic rate constant in

the absence of force, �G‡ is the height of the intrinsic energy
barrier, x‡ is the projection of the distance from the bound
state to the energy barrier along the applied external force f ,
and �−1=kBT with kB the Boltzmann’s constant and T abso-
lute temperature, the expression has been demonstrated ex-
perimentally �2,3� and widely employed in various forced
dissociation experiments. Later, at least four other models
have been put forward to explain and understand recent
forced dissociation experiments �4–6�. In particular, Dembo
proposed a Hookean spring model �4,5� to describe force
responses of receptor-ligand bonds. In addition to predicting
that the dissociation rates of the bonds increase exponentially
with the square of the force, the most important contribution
of the model may be the finding of a “catch bond” which is
defined as increasing its lifetime when the bond is stretched
by the force. Correspondingly, a bond described by the Bell
expression is defined “slip bond” for its lifetime decreases
when the force is applying.

Until recently, the catch bond predicted mathematically
was demonstrated in some biological adhesive bonds which
include the lectinlike bacterial adhesion protein FimH �7�,
P-selctin glycoprotein ligand 1�PSGL-1�–P- or L-selectins
�8,9� complex. However, these experiments also observed
that the catch bonds always transit into slip bonds when the
stretching force increases beyond a certain value, i.e., their
lifetimes are shortened again. The counterintuitive catch-to-
slip transition has attracted considerable attention from ex-
perimenters and theorists. Several kinetic models have been

proposed to explain the intriguing observations in qualitative
�9� and quantitative approaches �10–12�. We know that the
interface between the ligand and receptor in the adhesive
complex has been reported to be broad and shallow, such as
the crystal structure of PSGL-1–P-selectin complex revealed
in �13�. In addition, as one type of noncovalent bonds, the
interactions between the molecules are weaker. Therefore it
is plausible that the height and position of the energy barrier
of the complex fluctuate with time due to the thermal motion
of the whole macromolecular structure. Dissociation reac-
tions with fluctuating energy barriers have been studied in
terms of rate processes with dynamic disorder �14�, which
was proposed and theoretically investigated by Agmon and
Hopfield �15�. Hence, it is of interest to determine whether
the fluctuation of the height and position of the energy bar-
rier induces the catch-to-slip transition. On the other hand,
we also note that in Bell’s initial work and in the other mod-
els developed later, the intrinsic rate constant k0 and the dis-
tance x‡ were determined and time independent. It is possible
to derive results from the relaxation of this restriction.
Stimulated by the two considerations, in the present work we
propose a stochastic Gaussian rate model to quantitatively
describe the catch-to-slip bond transitions. In addition to pre-
dicting the experimental data, well, our model provides a
possible physical origin of the catch bonds: they are likely to
be induced by a stronger positive correlation between the
fluctuating height of the energy barrier �G‡ and the distance
x‡.

Consider a simple molecular dissociation process under a
constant force f ,

Binding state �B�→
kf

unbinding state �U� , �2�

where the time-dependent forced dissociation rate kf�t� is a
stochastic variable. If the survival probability P�t� of the
state B is assumed to satisfy the first order decay rate equa-
tion then its formal solution is given by*Email address: liufei@tsinghua.edu.cn
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P�t� =�exp�− �
0

t

kf���d��	 . �3�

Cumulant expansion of the above equation �16� leads to

P�t� 
 exp�− �
0

t

d��kf��� + �higher orders terms�� ,

�4�

where the higher order terms mean the higher
correlation functions of the rate k�t�, e.g., the double
integral of the second order correlation function
�kf�t1�kf�t2�− �kf�t1��kf�t2�, etc.

According to the standard Arrhenius form, we rewrite the
Bell expression as �kf�t�=ko�exp�−���G‡�t�− fx‡�t���.
Now the characteristic of the Bell expression is determined
by the two stochastic processes �G‡�t�, the energy barrier
height and the distance from the bound state to the barrier
x‡�t�. The simplest stochastic properties of them are listed
below,

��G‡�t� = �G0
‡,

�x‡�t� = x0
‡,

�x‡�t�x‡�0� − �x‡�0�2 = Kx�t� ,

��G‡�t��G‡�0� − ��G‡�0�2 = Kg�t� ,

��G‡�t�x‡�0� − ��G‡�0��x‡�0� = Kgx�t� . �5�

Here a stationary process and finite time correlation func-
tions are assumed. Then using cumulant expansion of �kf�t�
again and truncating it to second order, we have

�kf�t� = k0 exp�− ��G0
‡ +

�2

2
Kg −

�x0
‡ − �Kgx�2

2Kx
�

� exp��2Kx

2
� f −

�Kgx − x0
‡

�Kx
�2� , �6�

where Kg, Kx, and Kgx are the variance and covariance of and
between the two stochastic variables at the same time point.
Because the above consideration has a similar spirit with the
Kubo-Anderson’s stochastic line-shape theory �17�, and the
second order truncations in variables �G‡ and x‡ are used,
we name it Gaussian stochastic rate model �GSRM�.

The average dissociation rate Eq. �6� is so simple that we
can immediately distinguish four different physical situations
according to the definitions of the parameters: �i� If all Kx,
Kg, and Kgx vanish, then the average rate is just the classical
Bell expression Eq. �1�; �ii� If both Kx and Kgx vanish or in
the absence of the fluctuation of the distance x‡�t�, �kf�t� still
keeps the Bell formula except that the intrinsic dissociation
rate changes into k0 exp�−��G‡+�2Kg /2�, i.e., the fluctua-
tion of the barrier height speeds up the dissociation process
�15�. �iii� If both Kg and Kgx vanish or in the absence of the
fluctuation of �G‡, then we have

�kf�t� = k0 exp�− ��G‡�exp��x0
‡f +

�2Kx

2
f2� . �7�

Different from the Bell expression, when the force is larger,
the dissociate rate increases exponentially with the square of
force. This conclusion is very similar with that of Dembo
et al. �4�. However the physical origin is completely differ-
ent: The square of the force here arises from the fluctuation
of the distance x‡. It also means the bond is still slip and the
lifetime of the bond is shorter than that predicted by the Bell
formula. Of course, if the variance of the distance Kx is
very small, the modification to the Bell expression
can be neglected. Although the result is interesting, in the
following part we only focus on the fourth case, in which
�iv� both the distance and the barrier height are stochastic
variables. Because the force is positive at the beginning, if
Kgx�0 or ��Kgx−x0

‡��0, the behavior of the average disso-
ciation rate is then similar to the case in �iii�. However if
xe

‡��Kgx−x0
‡�0, we see that the rate first decreases with the

increasing of the force, and then increases when the force is
beyond fc�xe

‡ /�Kx, where the new parameters xe
‡ and fc are

defined for they have same dimensions of distance and force.
Hence, our model predicts the possibility of the catch-slip
bond transition at some critical transition force fc.

We first consider the single molecule constant force rup-
ture experiment �8�, where the average lifetime of the bond
sPSGL-1–P-selectin was measured. Because the average dis-
sociation rate kf�t� is time independent, the survival probabil-
ity P�t� is a simple exponential function exp�−t�kf�. Follow-
ing the general definition, the average lifetime of the bond is
just t̄�f�=1/ �kf. There are six parameters in this model. But
in fact we can combine them into only three: the intrinsic
dissociation rate k0

d=k0 exp�−��G0
‡+ ��2 /2�Kg�, which is the

parameter that experiments can measure in practice, and the
effective distance xe

‡ defined above, and Kx; they are inde-
pendent of each other. The average time then is

t̄�f� = N−1 exp�−
�f − fc�2

2�2 �
= �k0

d exp�−
xe

‡2

2Kx
��−1

exp�− � f −
xe

‡

�Kx
�2

/2��−2Kx
−1�� .

�8�

It is unexpected to find that the average lifetime of the bond
is a Gaussian-like function with respect to the force: the
mean value is fc, the variance �, and a prefactor N−1. Their
corresponding definitions see the above equation and are in-
troduced for convenience. Apparently they are still indepen-
dent. According to the characteristic of Gaussian function,
we can easily estimate the relevant parameters from the ex-
perimental data even without numerical methods; see Fig. 1:
they are respectively k0

d
133.0/s, xe
‡
2.88 nm, and

Kx
1 nm2, whereas the important correlation coefficient
Kgx�12.0 pN�nm2 and the catch-slip transition force
fc
12 pN which is directly read out from the experimental
data. Here the estimation is performed at room temperature.
We see that our prediction agrees with the data very well, in
particular when the force is lower than fc �18�. Interestingly,
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the above result also shows that, only through forced disso-
ciation experiment, we cannot isolate the precise information
about the variance of the energy barrier height and the cross
variance of the height and the distance.

A more challenging experiment to our theory is force
jump-ramp case, where the force increases linearly in time
from a initial jump force f0, f = f0+rt, and r is the ramp rate
�10�. In general, the stationary assumption of the forced dis-
sociation processes should be more reasonable for the con-
stant case. Considering that the direct extension of the Bell
expression to the time-dependent force case still provides
insightful results �6�. It is of interest to see what we can get
by extending Eq. �6� to force jump-ramp cases. Because the
experimental data is typically presented in terms of the force
histogram, we calculate the rupture force distribution P�f , f0�
according to definition P�f , f0�df =−�dS /dt�dt below,

P�f , f0� =
N

r
exp� �f − fc�2

2�2 −
N

r
�

f0

f

df�e�f� − fc�2/2�2� . �9�

We see that the average lifetime can be extracted from the
above equation by setting f = f0, i.e., t̄�f�=1/rP�f0 , f0�.

We calculate the force distributions of steady ramps
�f0=0 pN� at ramp rates 210 and 1400 pN/s to compare with
the experiment performed by Evans et al. �10�; see Fig. 2,
where we use the same parameters obtained above. We find
that the main qualitative characteristics of the predictions
and the experimental data are the same: the distributions and
the force histograms reach the maximum and minimum at
two distinct forces, which are named fmin and fmax respec-
tively. This observation could be understood by setting the
derivative of Eq. �9� with respect to f equal to zero,

f − fc =
N�2

r
exp� �f − fc�2

2�2 � . �10�

Interestingly, Eq. �10� has no solutions when the loading rate
is smaller than a critical ramp rate rc, which can be obtained

by simultaneously solving the above equation and its first
derivative,

1 =
N

r
�f − fc�exp� �f − fc�2

2�2 � . �11�

Then rc=N�f*− fc�exp��f*− fc�2 /2�2�, here f* is the force at
which the maximum and minimum merge. We estimate
rc
9 pN/s using the current parameters. If r�rc, then the
distribution is monotonous and decreasing function. Another
important prediction is that the values of fmin and fmax must
be larger than the catch-slip transition force fc. Indeed the
experimental observation shows that the force value at the
minimum force histogram are around a certain value even
the ramp rates change ten fold. �see Figs. 2 and 4 in Ref.
�10��. According to Eq. �10�, when the ramp rate is suffi-
ciently large, we easily obtain

fmin 
 fc +
N�

r
�12�

by linear expansion. Therefore we predict that fmin/ s ob-
served in Evans et al. experiment �10� are almost the catch-
slip transition force observed in the constant force rupture
experiment performed by Marshall et al. �8,19�. Unfortu-
nately, a simple analytic relationship between fmax and r can-
not be found from Eq. �10�. Even so, the extrema equation
implies that fmax is a monotonous and increasing function of
the ramp r, but the increase is very slow and is about
fmax	�ln r instead of fmax	 ln r �10,12�.

We know that the rupture force distribution of a simple
slip bond only has a maximum at a certain force value that
depends on the ramp rate �20�. Therefore the catch-slip bond
can easily be distinguished from the slip case by the presence
of a minimum on the force rupture density function at a
nonvanished force. Because the above analysis is indepen-

FIG. 1. �Color online� Average lifetime as a function of the
applied constant force for bonds of dimeric P-selectin with mono-
meric sPSGL-1 �blue square symbols� �8� and the rescaled dimeric
PSGL-1 �red circle symbols� from Ref. �12�. The blue solid line is
given by GSRM. For the definitions of the symbols N, �, and fc see
Eq. �9�.

FIG. 2. �Color online� The distribution of rupture forces under
two loading rates predicted by our model for binding of P-selectin
to sPSGL-1. The symbols of inset are the steady ramp experimental
data �10�, where the loading rates are 210 pN/s �red squares� and
1400 pN/s �blue circles�, respectively. We must point out that the
experimental data is for binding of P-selectin to PSGL-1, while our
parameters are for sPSGL-1.
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dent of the initial force jump f0, in order to track the catch
behaviors in the force jump-ramp experiments, the initial
force f0 should be smaller than fc.

In conclusion, we proposed a stochastic dissociation rate
model to explain the intriguing catch-slip bond transitions
observed in the single molecule forced dissociation experi-
ments, while the fluctuating rate is dependent on the two
correlated stochastic control variables, the energy barrier
height �G‡ and the distance x‡ between the bound state and
the energy barrier. Compared to the previous models with

five �10�, seven �11�, and four parameters �12� involved, our
model only requires three physical parameters: k0

d, xe
‡, and

Kx. Moreover, GSRM does not need the classical pathway
concept or a priori catch bond �10–12,21�. Because there is
no direct experiments or molecular structures supporting the
pathway scenario, a change in concept would be important
for further experimental study of the catch-slip bonds.

F.L. would like to thank Tokyo Institute of Technology for
their hospitality, where this work was completed.
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